我要爆料(有奖爆料 20元--1000元)我要爆料 网络爆料台 随时随地,极速爆料_华润视频内窥镜

欢迎访问华润有限责任公司

收藏本站| 设为首页|网站地图
华润
华润电话

95528

我要爆料(有奖爆料 20元--1000元)我要爆料 网络爆料台 随时随地,极速爆料

来源:华润

近日,在雷锋网(公众号:雷锋网) AI 研习社公开课上,深圳市宜远智能科技有限公司负责人吴博剖析了目标检测已有的框架,重点分享如何对目标检测框架进行改造,以便在医学图像分析中产生更好的效果。公开课回放视频网址:/httpwww.mooc.ai/open/course/559?=aitechtalkwubo

学术背景:先后在清华大学、香港浸会大学求学,并在英国利兹大学完成博士后,师从计算机视觉专家唐远炎教授等人。在 ICML/ACL 等顶级会议发表过多篇人工智能论文。

工业界经验:2017 年创立医疗 AI 公司——宜远智能,该公司集结了 20 多名人工智能博士以及众多海内外医学顾问,为医疗健康领域提供 AI 增强解决方案,并与多家知名医院达成合作,并推出成型产品。创立宜远智能之前,吴博曾在爱立信大数据研究院任职,还曾主导过百亿级虚拟品电商、数字货币系统的业务及数据架构建设与运营。

今天给大家讲一下目标检测集成框架在医学图像 AI 辅助分析中的应用。

分类与识别:这是最简单最直接的任务类型。左边的图是吴恩达教授之前做的一个 X 光模型,这个模型中主要做分类,判断是否有肺炎等病症。图像分类与识别是常见的图像分析(MIA: Medical Image Analysis) 任务,是图像检索的基本单元。

像 ImageNet 被 AlexNet、VGG、GoogleNet、ResNet、SENet 等深度神经网络从 72% 的准确率,逐步提升到 97.75%,超越人眼 94.9% 的水平。而医学图像的分类也非常具有现实意义,比如可以判断人是有病还是无病、以及是哪类病,像 Nature、Science 杂志就发表过皮肤癌、胸片、眼底照等医学场景的图像分类模型。

视频内窥镜:我要爆料(有奖爆料 20元--1000元)我要爆料              网络爆料台 随时随地,极速爆料
我要爆料(有奖爆料 20元--1000元)我要爆料 网络爆料台 随时随地,极速爆料

但在实操过程中,我们发现将医学影像当成一个分类问题来处理,任务设置未免过于宏大和粗放。深度学习的模型具有黑盒模型的特点,特点就是端到端(end to end)一步到位,从输入到输出而不管中间的过程,虽然也能实现较好的结果,却往往令人对整个学习过程,知其然而不知其所以然。并且,将医学影像简单当成一个分类问题,也算不上解决医疗问题,虽然其可视为一定程度的计算机辅助诊断(CAD: Computer Aided Diagnose),但归因以及可解释性得缺陷,并不足以让医生全盘参考

目标检测:这个任务类型也很普遍,并且现在越发普及,意义越来越重大。我们从 CAD 的历史和发展进程中,可以看到目标检测与医学图像分析之间的联系。CAD 分为两类:

计算机辅助诊断 (CADx: Computer Aided Diagnose) :对病症进行分类、识别、预测

计算机辅助检测 (CADe:Computer Aided DETection):主要做对图像内病灶/病变 (lesion) 的检测。从归因到果的角度来说,CADe 可能在做医学图像分析时更切合实际。CADe 更接近目标检测。

而 ImageNet 2013 年推出目标检测挑战,在四万张互联网图片中检测 200 类物体,mAP 从 0. 2258 提升到 2017 年 0.7322,这个水平也几乎达到了人类的水平。

分割:这也是常规的医学图像分析中的一类任务。分割主要包括:语义分割 (semantic segmentation)、实例分割 (instance segmentation)。医学图像分析则涉及到器官分割勾画 (organ and substructure segmentation),还有病变/病灶分割 (lesion segmentation) 等。而医学影像分割跟常规图像的语义分割、实例分割不太一样。我们得看法是,把分割问题当作目标检测来处理,也方便借力于目标检测领域方法的蓬勃发展。

关键词:内窥镜手术安全吗 ;汽车内窥镜 ;视频内窥镜

本文由华润整理发布,转载请注明出自http://www.gozonehk.com/027/5766.html

上一篇:让口腔疾病一目了然下一篇:我要爆料(有奖爆料 20元--1000元)我要爆料 网络爆料台 随时随地,极速爆料

车仆涡轮车保养案例,油耗降的车主惊呼相关文章

我要爆料(有奖爆料 20元--1000元)我要爆料 网络爆料台 随时随地,极速爆料图文资讯